Efficient Algorithm for Minimal-Rank Matrix Approximations

نویسنده

  • Alle-Jan van der Veen
چکیده

For a given matrix H which has d singular values larger than ε, an expression for all rank-d approximants Ĥ such that (H− Ĥ) has 2-norm less than ε is derived. These approximants have minimal rank, and the set includes the usual ‘truncated SVD’ low-rank approximation. The main step in the procedure is a generalized Schur algorithm, which requires only O(1/2 m 2n) operations (for an m × n matrix H). The column span of the approximant is computed in this step, and updating and downdating of this space is straightforward. The algorithm is amenable to parallel implementation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing Lower Rank Approximations of Matrix Polynomials

Given an input matrix polynomial whose coefficients are floating point numbers, we consider the problem of finding the nearest matrix polynomial which has rank at most a specified value. This generalizes the problem of finding a nearest matrix polynomial that is algebraically singular with a prescribed lower bound on the dimension given in a previous paper by the authors. In this paper we prove...

متن کامل

Subspace Iteration Randomization and Singular Value Problems

A classical problem in matrix computations is the efficient and reliable approximation of a given matrix by a matrix of lower rank. The truncated singular value decomposition (SVD) is known to provide the best such approximation for any given fixed rank. However, the SVD is also known to be very costly to compute. Among the different approaches in the literature for computing low-rank approxima...

متن کامل

Generalized Low-Rank Approximations

We study the frequent problem of approximating a target matrix with a matrix of lower rank. We provide a simple and efficient (EM) algorithm for solving weighted low rank approximation problems, which, unlike simple matrix factorization problems, do not admit a closed form solution in general. We analyze, in addition, the nature of locally optimal solutions that arise in this context, demonstra...

متن کامل

An Efficient, Sparsity-Preserving, Online Algorithm for Low-Rank Approximation

Low-rank matrix approximation is a fundamental tool in data analysis for processing large datasets, reducing noise, and finding important signals. In this work, we present a novel truncated LU factorization called Spectrum-Revealing LU (SRLU) for effective low-rank matrix approximation, and develop a fast algorithm to compute an SRLU factorization. We provide both matrix and singular value appr...

متن کامل

Computing the Rank of Large Sparse Matrices over Finite Fields

We want to achieve efficient exact computations, such as the rank, of sparse matrices over finite fields. We therefore compare the practical behaviors, on a wide range of sparse matrices of the deterministic Gaussian elimination technique, using reordering heuristics, with the probabilistic, blackbox, Wiedemann algorithm. Indeed, we prove here that the latter is the fastest iterative variant of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994